
Can Great Programmers Be Taught?

John Ousterhout
Stanford University

August 28, 2018 Can Great Programmers be Taught? Slide 2

Q: What is the most important
idea in Computer Science?

... no-one teaches it

A: Problem decomposition

Elite programmers are >10x
more productive

... no-one teaches elite skills

Teaching Great Programmers

August 28, 2018 Can Great Programmers be Taught? Slide 3

Is it possible?

By whom?

How?

Code
reviews

Code
reviews

Code
reviews

August 28, 2018 Can Great Programmers be Taught? Slide 4

CS 190: Software Design Studio
● Iterative approach, like English writing class:

 Write
 Get feedback
 Rewrite

● Small class: ≤ 20 students

1 2 3 4 5 6 7 8 9 10

1. Build “large” system
from scratch

2. Revise based on
code reviews

3. Build another system
from scratch

Instructor reads 20-30k lines of code

Week

August 28, 2018 Can Great Programmers be Taught? Slide 5

What are the Secrets?
● A few (somewhat vague) overall concepts:

 Working code isn’t enough: must minimize complexity
 Complexity comes from dependencies and obscurity
 Strategic vs. tactical programming
 Classes should be deep
 General-purpose classes are deeper
 New layer, new abstraction
 Comments should describe things that are not obvious from the code
 Define errors out of existence
 Pull complexity downwards

● Red flags

● Most constructive in the context of code reviews

August 28, 2018 Can Great Programmers be Taught? Slide 6

Classes Should be Deep

Class

Useful functionality provided
by class (benefit)

Interface: everything that must
be known to users (cost)

Reformulation of classic Parnas paper:
“On the Criteria to be Used in Decomposing Systems into Modules”

Shallow Class

Deep Class

August 28, 2018 Can Great Programmers be Taught? Slide 7

Typical Shallow Method

private void addNullValueForAttribute(String attribute) {
 data.put(attribute, null);
}

August 28, 2018 Can Great Programmers be Taught? Slide 8

Classes Should be Deep, cont’d

● Common wisdom: “classes and methods should be small”

● Result: classitis

● Rampant in Java world:

 FileInputStream fileStream =
 new FileInputStream(fileName);
 BufferedInputStream bufferedStream =
 new BufferedInputStream(fileStream);
 ObjectInputStream objectStream =
 new ObjectInputStream(bufferedStream);

● Length isn’t the big issue, it’s abstraction

August 28, 2018 Can Great Programmers be Taught? Slide 9

A Deep Interface
● Unix file I/O:

int open(const char* path, int flags, mode_t permissions);
int close(int fd);
ssize_t read(int fd, void* buffer, size_t count);
ssize_t write(int fd, const void* buffer, size_t count);
off_t lseek(int fd, off_t offset, int referencePosition);

● Hidden below the interface:
 On-disk representation, disk block allocation
 Directory management, path lookup
 Permission management
 Disk scheduling
 Block caching
 Device independence

August 28, 2018 Can Great Programmers be Taught? Slide 10

Define Errors Out of Existence
● Exceptions: a huge source of complexity

● Common wisdom: detect and throw as many errors as possible

● Better approach: define semantics to eliminate exceptions

● Example mistakes:
 Tcl unset command

(throws exception if variable doesn’t exist)
 Windows: can’t delete file if open
 Java substring range exceptions

Overall goal: minimize the number of places where exceptions must
be handled

August 28, 2018 Can Great Programmers be Taught? Slide 11

Tactical vs. Strategic Programming

● Tactical programming
 Goal: get next feature/bug fix working ASAP
 A few shortcuts and kludges are OK?
 Result: bad design, high complexity
 Extreme: tactical tornadoes

● Complexity is incremental

Working code isn’t enough

August 28, 2018 Can Great Programmers be Taught? Slide 12

Tactical vs Strategic Programming, cont’d

● Strategic programming
 Goal: produce a great design
 Simplify future development
 Minimize complexity
 Must sweat the small stuff

● Investment mindset
 Take extra time today
 Pays back in the long run

Time

Total
Progress

Tactical

Strategic

August 28, 2018 Can Great Programmers be Taught? Slide 13

How Much To Invest?
● Most startups are totally tactical

 Pressure to get first products out quickly
● “We can clean this up later”

 Code base quickly turns to spaghetti
 Extremely difficult/expensive to repair damage

● Facebook: “Move quickly and break things”
 Empowered developers
 Code base notoriously incomprehensible/unstable
 Eventually changed to “Move quickly with solid infrastructure”

● Can succeed with strong design culture: Google and VMware
 Attracted best engineers

August 28, 2018 Can Great Programmers be Taught? Slide 14

How Much To Invest, cont’d

● Make continual small investments: 10-20% overhead

● When writing new code
 Careful design
 Good documentation

● When changing existing code
 Always find something to improve
 Don’t settle for fewest modified lines of code
 Goal: after change, system is the way it would have been if designed that

way from the start

Ask yourself: “is this the most I can afford to invest right now?”

August 28, 2018 Can Great Programmers be Taught? Slide 15

Is the Course Working?

● Hard to know: ask students in 5-10 years?

● Just the first step towards becoming a great programmer

● Good energy in class:
 Tone of discussions changes halfway through
 Students are thinking about their code in new ways

● Interesting challenges for me:
 What causes complexity?
 How to design simple code?

● Discovering new ideas from reading students’ code
 Specialized → complicated
 General-purpose → simple, deep

August 28, 2018 Can Great Programmers be Taught? Slide 16

Software Design Book

● Goal: capture ideas from CS190
 Reach more people
 Start a discussion
 Define terminology

● Short: 170 pages

● More philosophical than prescriptive

● Published on Amazon: April 2018

Will the design ideas make sense
standalone, without code reviews?

August 28, 2018 Can Great Programmers be Taught? Slide 17

Conclusion
● It is possible to teach software design

 But not currently scalable

● Principles gradually emerging

● Long-term goal: increase design awareness in the software community
 Book as vehicle for discussion
 Attract criticisms, new ideas, better examples
 Mailing list: software-design-book@googlegroups.com
 Incorporate new ideas in future versions of book

Can we agree on a set of software design principles?

mailto:software-design-book@googlegroups.com

Questions/Discussion

August 28, 2018 Can Great Programmers be Taught? Slide 18

August 28, 2018 Can Great Programmers be Taught? Slide 19

Discussion Questions
● How much are you willing to invest?

● How much does a poor code base slow you down?

● Do your code reviews consider design issues?

	Slide 1
	Slide 2
	Teaching Great Programmers
	CS 190: Software Design Studio
	What are the Secrets?
	Classes Should be Deep
	Typical Shallow Method
	Classes Should be Deep, cont’d
	A Deep Interface
	Define Errors Out of Existence
	Tactical vs. Strategic Programming
	Tactical vs Strategic Programming, cont’d
	How Much To Invest?
	How Much To Invest, cont’d
	Is the Course Working?
	Software Design Book
	Conclusion
	Slide 18
	Discussion Questions

