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Q: What is the most important
idea in Computer Science?

... no-one teaches it

A: Problem decomposition

Elite programmers are >10x 
more productive

... no-one teaches elite skills



Teaching Great Programmers
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Is it possible?

By whom?

How?
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CS 190: Software Design Studio
● Iterative approach, like English writing class:

 Write
 Get feedback
 Rewrite

● Small class: ≤ 20 students

1 2 3 4 5 6 7 8 9 10

1. Build “large” system
from scratch

2. Revise based on
code reviews

3. Build another system
from scratch

Instructor reads 20-30k lines of code

Week
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What are the Secrets?
● A few (somewhat vague) overall concepts:

 Working code isn’t enough: must minimize complexity
 Complexity comes from dependencies and obscurity
 Strategic vs. tactical programming
 Classes should be deep
 General-purpose classes are deeper
 New layer, new abstraction
 Comments should describe things that are not obvious from the code
 Define errors out of existence
 Pull complexity downwards

● Red flags

● Most constructive in the context of code reviews



August 28, 2018 Can Great Programmers be Taught? Slide 6

Classes Should be Deep

Class

Useful functionality provided 
by class (benefit)

Interface: everything that must 
be known to users (cost)

Reformulation of classic Parnas paper:
“On the Criteria to be Used in Decomposing Systems into Modules”

Shallow Class

Deep Class
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Typical Shallow Method

private void addNullValueForAttribute(String attribute) {
    data.put(attribute, null);
}
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Classes Should be Deep, cont’d

● Common wisdom: “classes and methods should be small”

● Result: classitis

● Rampant in Java world:

    FileInputStream fileStream =
            new FileInputStream(fileName);
    BufferedInputStream bufferedStream =
            new BufferedInputStream(fileStream);
    ObjectInputStream objectStream =
            new ObjectInputStream(bufferedStream);

● Length isn’t the big issue, it’s abstraction
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A Deep Interface
● Unix file I/O:

int open(const char* path, int flags, mode_t permissions);
int close(int fd);
ssize_t read(int fd, void* buffer, size_t count);
ssize_t write(int fd, const void* buffer, size_t count);
off_t lseek(int fd, off_t offset, int referencePosition);

● Hidden below the interface:
 On-disk representation, disk block allocation
 Directory management, path lookup
 Permission management
 Disk scheduling
 Block caching
 Device independence
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Define Errors Out of Existence
● Exceptions: a huge source of complexity

● Common wisdom: detect and throw as many errors as possible

● Better approach: define semantics to eliminate exceptions

● Example mistakes:
 Tcl unset command

(throws exception if variable doesn’t exist)
 Windows: can’t delete file if open
 Java substring range exceptions

Overall goal: minimize the number of places where exceptions must 
be handled
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Tactical vs. Strategic Programming

● Tactical programming
 Goal: get next feature/bug fix working ASAP
 A few shortcuts and kludges are OK?
 Result: bad design, high complexity
 Extreme: tactical tornadoes

● Complexity is incremental

Working code isn’t enough
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Tactical vs Strategic Programming, cont’d

● Strategic programming
 Goal: produce a great design
 Simplify future development
 Minimize complexity
 Must sweat the small stuff

● Investment mindset
 Take extra time today
 Pays back in the long run

Time

Total
Progress

Tactical

Strategic
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How Much To Invest?
● Most startups are totally tactical

 Pressure to get first products out quickly
● “We can clean this up later”

 Code base quickly turns to spaghetti
 Extremely difficult/expensive to repair damage

● Facebook: “Move quickly and break things”
 Empowered developers
 Code base notoriously incomprehensible/unstable
 Eventually changed to “Move quickly with solid infrastructure”

● Can succeed with strong design culture: Google and VMware
 Attracted best engineers
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How Much To Invest, cont’d

● Make continual small investments: 10-20% overhead

● When writing new code
 Careful design
 Good documentation

● When changing existing code
 Always find something to improve
 Don’t settle for fewest modified lines of code
 Goal: after change, system is the way it would have been if designed that 

way from the start

Ask yourself: “is this the most I can afford to invest right now?”
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Is the Course Working?

● Hard to know: ask students in 5-10 years?

● Just the first step towards becoming a great programmer

● Good energy in class:
 Tone of discussions changes halfway through
 Students are thinking about their code in new ways

● Interesting challenges for me:
 What causes complexity?
 How to design simple code?

● Discovering new ideas from reading students’ code
 Specialized → complicated
 General-purpose → simple, deep
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Software Design Book

● Goal: capture ideas from CS190
 Reach more people
 Start a discussion
 Define terminology

● Short: 170 pages

● More philosophical than prescriptive

● Published on Amazon: April 2018

Will the design ideas make sense 
standalone, without code reviews?
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Conclusion
● It is possible to teach software design

 But not currently scalable

● Principles gradually emerging

● Long-term goal: increase design awareness in the software community
 Book as vehicle for discussion
 Attract criticisms, new ideas, better examples
 Mailing list: software-design-book@googlegroups.com
 Incorporate new ideas in future versions of book

Can we agree on a set of software design principles?

mailto:software-design-book@googlegroups.com


Questions/Discussion
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Discussion Questions
● How much are you willing to invest?

● How much does a poor code base slow you down?

● Do your code reviews consider design issues?
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